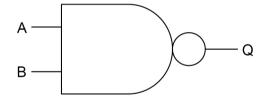

0 1 . 1 Figure 1 shows a logic gate symbol.

Write the name of the logic gate underneath the figure.

[1 mark]


Figure 1

Answer:

0 1. 2 Figure 2 shows a logic gate symbol.

Figure 2

Complete the truth table below for the logic gate shown in Figure 2.

Α	В	Q
0	0	
0	1	
1	0	
1	1	

[3 marks]

0 2 . 1 State the name of the logic gate represented by the truth table shown in Figure 1. [1 mark]

Figure 1

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Answer:

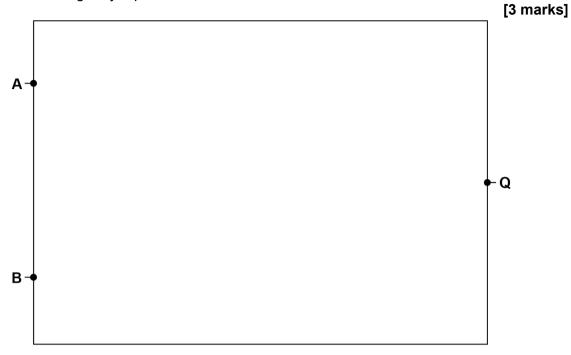
- 0 2 . 2 A factory has a machine for filling bottles on a conveyor belt.
 - Q represents the signal to move the conveyor belt on. When Q is set to true the belt will move on.
 - A is a sensor which outputs true if a bottle is present.
 - B is a sensor which outputs true if a bottle is full.
 - C is a sensor which outputs true if a bottle is correctly positioned.
 - D is a sensor which outputs true if the next section has a bottle in it.

The conveyor belt is able to move if both of these conditions are true:

- a bottle is full and correctly positioned or there is no bottle present
- there is no bottle in the next section.

In the box below, draw a logic circuit for the machine.

[3 marks]


0 2 . 3	De Morgan's laws can be applied to enable a combination of logic gates to be replaced by a single gate that produces the same output.
	What single gate could replace the combination of gates in the expression $\overline{\overline{A}\cdot\overline{B}}$? [1 mark

0 3. 1 Complete the truth table for A NAND B.

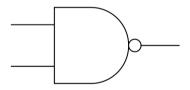
A	В	A NAND B
0	0	
0	1	
1	0	
1	1	

0 3. 2 A XOR B can be implemented as a logic circuit without using an XOR gate.

Using **only** AND, OR and NOT gates draw a circuit that will produce an output **Q** which is logically equivalent to **A XOR B**.

0 4. 1 State which logic gate has the truth table shown in Figure 4.

[1 mark]


Figure 4

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Answer			

0 4. 2 State the logic gate that is represented by the symbol shown in Figure 5.

Figure 5

Answer	r	

0 4.3 Draw the logic circuit for the following Boolean expression.

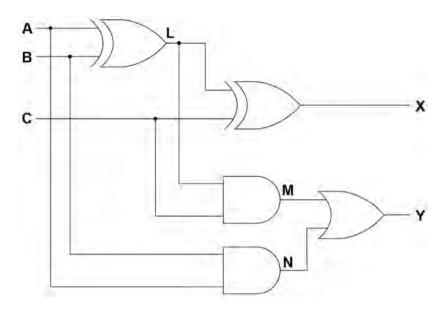
$$Q = \overline{\overline{A \cdot B} \, + C}$$

[2 marks]

0 4 . 4 Complete the truth table below.

A	В	B	$\left(\mathbf{A} + \overline{\mathbf{B}}\right)$	$\left(\mathbf{A} + \overline{\mathbf{B}}\right) \cdot \mathbf{B}$
0	0			
0	1			
1	0			
1	1			

Using the final column, give a simplified Boolean expression for


$$(A + \overline{B}) \cdot B$$

[3 marks]

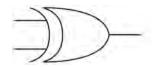
Answer_

0 5 . 1 Figure 3 shows a circuit diagram.

Figure 3

Complete the truth table below for the circuit shown in Figure 3.

[3 marks]

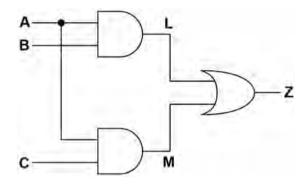

Α	В	С	L	М	N	Х	Y
0	0	0		0		0	
0	0	1		0		1	
0	1	0		0		1	
0	1	1		1		0	
1	0	0		0		1	
1	0	1		1		0	
1	1	0		0		0	
1	1	1		0		1	

0 5 . 2	Using Figure 3, write a Boolean expression for output Y in terms of inputs A,	B and C.
	[:	2 marks]

Y = ____

0 6 . 1 Figure 2 shows the symbol for a logic gate.

Figure 2

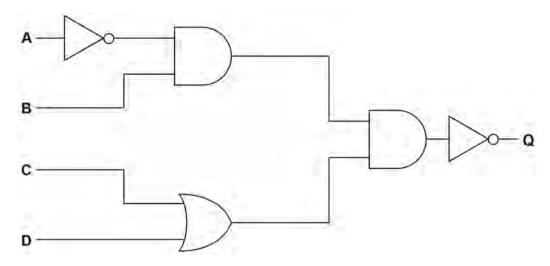


State the name of the logic gate shown in Figure 2.

[1 mark]

0 6.2 Figure 3 shows a logic circuit.

Figure 3


Complete the truth table for the logic circuit in Figure 3.

[2 marks]

A	В	С	L	M	Z
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

0 6. 3 Figure 4 shows a logic circuit.

Figure 4

Write a Boolean expression for Q.

[3 marks]

0	6	4	Using the rules of Boolean algebra, simplify the following expression.
	•	• _ •	boiling the raise of Beelean algebra, simplify the fellowing expression:

$$\overline{W} \cdot X \cdot Z + W \cdot Z + X \cdot Y \cdot \overline{Z} + \overline{W} \cdot X \cdot Y \cdot 1$$

You must show your working.	[4 marks]
Final answer	

0 7 . 1 Complete the truth tables for the OR and NAND gates.

[1 mark]

OR Gate

Inp	uts	Output
0	0	
0	1	
1	0	
1	1	

NAND Gate

Inp	uts	Output
0	0	
0	1	
1	0	
1	1	

0 7 . 2 Draw a logic circuit for the Boolean expression:

$$Q = \overline{A.\,B + C.\,\overline{B}}$$

[4 marks]

0 8 . 1

Figure 6 shows truth tables for four logic gates. The truth tables are labelled **Table A**, **Table B**, **Table C** and **Table D**.

Figure 6

Table A									
Inp	uts	Output							
0	0	1							
0	1	0							
1	0	0							
1	1	0							

Table B							
Inputs Output							
0	0	0					
0	1	1					
1	0	1					
1	1	0					

Table C								
Inputs Output								
0	0	1						
0	1	0						
1	0	0						
1	1	1						

Table D							
Inputs Output							
0	0	0					
0	1	1					
1	0	1					
1	1	1					

Shade in **one** lozenge to indicate which truth table **does not** represent one of the logic gates: OR, XOR, NOR.

[1 mark]

Table	Α
-------	---

0

Table B

0

Table C

0

Table D

0

A 7-segment display is a component used to display a digit on devices such as calculators. A 7-segment display consists of seven lights (called segments) which can be illuminated individually to make the shapes of digits. For example, the digit 3 could be displayed by illuminating five of the seven segments like this (black shading indicates an illuminated segment):

Figure 7 shows part of a logic circuit which is designed to take a binary representation of a single decimal digit as its input and light up the segments to display the decimal digit. The part of the circuit shown controls the lighting of **just one segment** of the display.

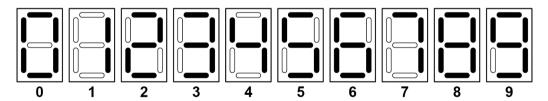
The inputs to the circuit are **X3**, **X2**, **X1** and **X0**. Together these form the binary representation of the decimal digit to display. For example, if the inputs to the circuit were:

Х3	X2	X1	X0
0	1	0	1

then the display would need to show this pattern:

as 0101 is the binary representation of the decimal digit 5

The output **Q** is connected to one segment of the display. When **Q** is 1 this segment lights up, when it is 0 the segment does not light up.

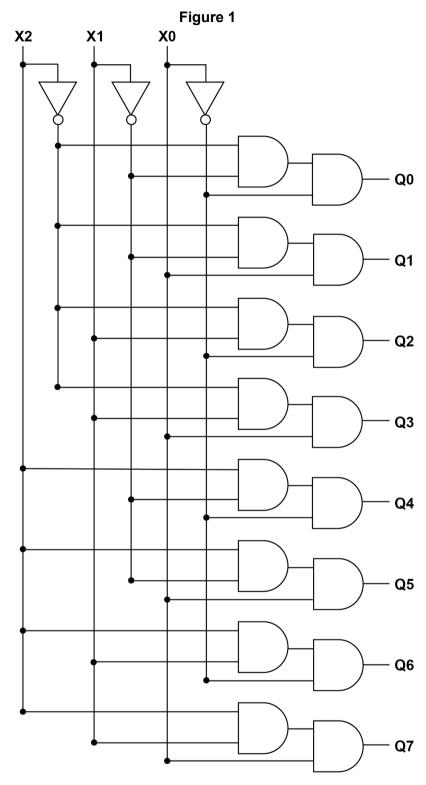

- 0 8 . 2 Complete every empty cell in the truth table below for the circuit in Figure 7
 - The listed inputs to the table (**X3**, **X2**, **X1**, **X0**) represent the decimal digits 0–9 in binary, which are the only allowed inputs.
 - The letters A–E have been used to label intermediate points on the circuit in Figure 7 to help you to work out the final output Q
 - Some of the cells have been completed for you.

[4 marks]

	INP	UTS		INTERMEDIATE POINTS				OUTPUT	
Х3	X2	X1	X0	Α	В	С	D	Е	Q
0	0	0	0						
0	0	0	1	1	0	1	0	0	0
0	0	1	0						
0	0	1	1	1	1	0	0	1	1
0	1	0	0						
0	1	0	1	0	0	1	1	1	1
0	1	1	0	0	0	1	1	1	1
0	1	1	1						
1	0	0	0	1	0	1	0	0	1
1	0	0	1						

Figure 8 shows the patterns of segments that are illuminated for each of the decimal digits 0–9.

Figure 8


By considering the inputs and outputs of the circuit in **Figure 7** and consulting your trace table, state which of the segments in the display (labelled **a** to **g** below) the output **Q** from the circuit is controlling.

[1 mark]

Output **Q** is controlling segment

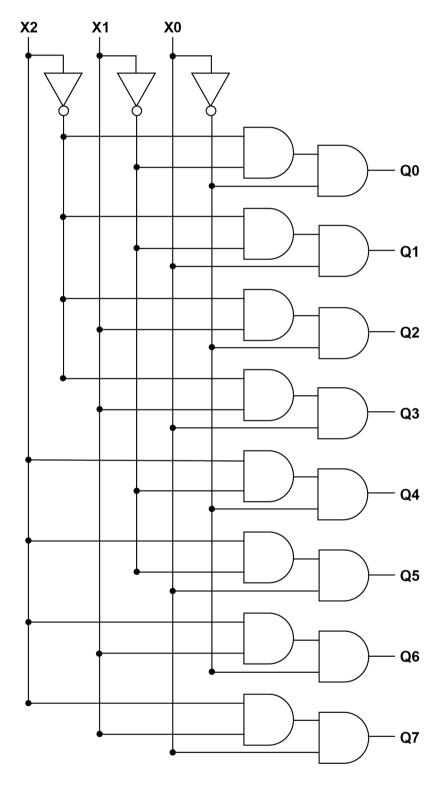
Figure 1 shows a circuit with inputs X0 to X2 and outputs Q0 to Q7

0 9.1 Write a Boolean expression to represent the output Q1 of the circuit in Figure 1. [1 mark]

Q1 = ____

0 9. 2 Complete the truth table below for the circuit in **Figure 1**.

[3 marks]


INPUTS				OUTPUTS						
X2	X1	X0	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

0 9.3 Explain the purpose of the circuit in **Figure 1**.

Considering the inputs and outputs of the circuit and consulting your answers to Question 04.1 and Question 04.2 may help you to do this.		
Question 04.1 and Question 04.2 may help you to do this.	[2 marks]	

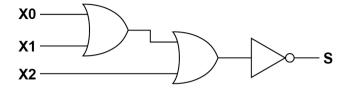

Figure 1 is repeated below to help you answer Question 04.4.

Figure 1 (repeated)

10 9.4 The logic circuit in **Figure 2** produces an output **S** that is equivalent to one of the outputs of the logic circuit in **Figure 1**, for the inputs **X0**, **X1** and **X2**.

Figure 2

Which output ($\mathbf{Q0}$ to $\mathbf{Q7}$) from Figure 1 is the output S from the circuit in Figure 2 equivalent to?

1 0. 1 Complete the truth table in **Figure 1** for the inputs A and B.

Figure 1

A	В	A + B	Ā	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	$\overline{\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}}$
0	0					
0	1					
1	0					
1	1					

1 0 . 2	The truth table in Figure 1 demonstrates the correctness of an important law Boolean algebra.	in
	State the name of the law.	[1 mark]

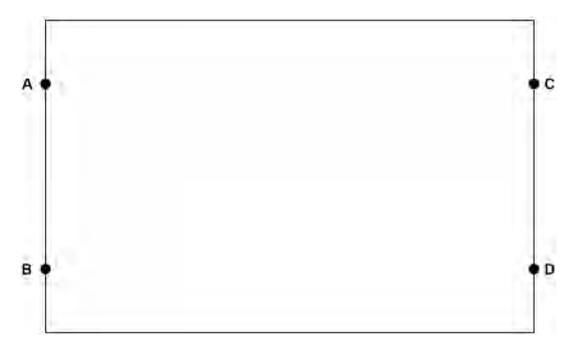

1 1 The truth table in **Table 4** represents the operation of a logic system.

Table 4

Inputs		Outputs	
Α	В	С	D
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

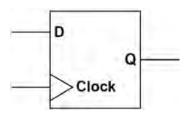
In the space below, draw a logic circuit that would produce the outputs shown in **Table 4** for the given inputs.

To achieve full marks for your response, your circuit should use **exactly two gates**. [3 marks]


1 1.2	Explain the purpose of the circuit that you have drawn that produces the outputs given in Table 4 .
	[1 mark]

1 2 . 1 Draw a logic circuit for the Boolean expression:

$$Q = \overline{\overline{A} \cdot B + \overline{B + C \cdot D}}$$


Do not simplify the expression.

[4 marks]

A flip-flop is a component that can be incorporated into a logic circuit. **Figure 3** shows a diagram of an edge-triggered D-type flip-flop.

Figure 3

Explain how the output ${\bf Q}$ will be affected when a pulse is received on the ${\bf Clock}$ input.

1 2. 3 Using the rules of Boolean algebra, simplify the following Boolean expression.

Answer _____

$$\overline{A} \cdot \left(B \cdot C \cdot D + B \cdot C \cdot \overline{D} + B\right) + \overline{\overline{A} + B}$$

You must show your working.

[4 marks]

Working